Artificial intelligence in neuropathology: deep learning-based assessment of tauopathy

  • 1.

    Hoglinger, GU, G Respondek and GG Kovacs. New classification of tauopathies. Rev Neurol (Paris) 2018.

  • 2.

    Lebouvier T, Pasquier F, Buee L. Update on tauopathies. Curr Opin Neurol. 2017;30:589–98.

  • 3.

    Morris M, Maeda S, Vossel K, Mucke L. The many faces of tau. Neuron. 2011;70:410–26.

  • 4.

    Höglinger GU, Melhem NM, Dickson DW, et al. Identification of common variants influencing risk of the tauopathy progressive supranuclear palsy. Nat Genet. 2011;43:699–705.

  • 5.

    Bennett DA, Schneider JA, Buchman AS, Barnes LL, et al. Overview and findings from the rush memory and aging project. Curr Alzheimer Res. 2012;9:646–63.

  • 6.

    Ghetti B, Oblak AL, Boeve BF, et al. Invited review: Frontotemporal dementia caused by microtubule-associated protein tau gene (MAPT) mutations: a chameleon for neuropathology and neuroimaging. Neuropathol Appl Neurobiol. 2015;41:24–46.

  • 7.

    Cox PA, Davis DA, Mash DC, et al. Dietary exposure to an environmental toxin triggers neurofibrillary tangles and amyloid deposits in the brain. Proc R Soc B. 2016;283:20152397

  • 8.

    McKee AC, Cairns NJ, Dickson DW, et al. The first NINDS NIBIB consensus meeting to define neuropathological criteria for the diagnosis of chronic traumatic encephalopathy. Acta Neuropathol. 2016;131:75–86.

  • 9.

    Ferrer I, Lopez-Gonzalez I, Carmona M, et al. Glial and neuronal tau pathology in tauopathies: characterization of disease-specific phenotypes and tau pathology progression. J Neuropathol Exp Neurol. 2013;73:81–97.

  • 10.

    Kahlson MA, Colodner KJ. Glial tau pathology in tauopathies: functional consequences. J Exp Neurosci. 2015;9(Suppl 2):43–50.

  • 11.

    Kovacs GG. Tauopathies (Kovacs GG, Alafuzoff I, eds) Vol. 145, 355–68, Handb Clin Neurol., Elsevier, 2017.

  • 12.

    Murray ME, Kouri N, Lin W-L, et al. Clinicopathologic assessment and imaging of tauopathies in neurodegenerative dementias. Alzheimer’s Res Ther. 2014;6:1.

  • 13.

    Braak H, Braak E. Neuropathological staging of Alzheimer-related changes. Acta Neuropathol. 1991;82:239–59.

  • 14.

    Jellinger KA. Different patterns of hippocampal tau pathology in Alzheimer’s disease and PART. Acta Neuropathol. 2018.

  • 15.

    Salloway S, Sperling R. Understanding conflicting neuropathological findings in patients clinically diagnosed as having Alzheimer dementia. JAMA Neurol. 2015;72:1106–8.

  • 16.

    Al-Janabi S, Huisman A, Van Diest PJ. Digital pathology: current status and future perspectives. Histopathology. 2012;61:1–9.

  • 17.

    Litjens G, Kooi T, Bejnordi BE. et al. A survey on deep learning in medical image analysis. Med Image Anal. 2017;42:60–88.

  • 18.

    Stead WW. Clinical implications and challenges of artificial intelligence and deep learning. JAMA. 2018;320:1107–8.

  • 19.

    Hinton G. Deep learning—a technology with the potential to transform health care. JAMA. 2018;320:1101–2.

  • 20.

    LeCun Y, Bengio Y, Hinton G. Deep learning. Nature. 2015;28:436–44.

  • 21.

    Naylor CD. On the prospects for a (deep) learning health care system. JAMA. 2018;320:1099–1100.

  • 22.

    Aresta G, Araújo T, Kwok S, et al. BACH: Grand Challenge on Breast Cancer Histology Images. arXiv Prepr. 2018;arXiv:1808.04277.

  • 23.

    Donovan MJ, Fernandez G, Scott R, et al. Development and validation of a novel automated Gleason grade and molecular profile that define a highly predictive prostate cancer progression algorithm-based test. Prostate Cancer Prostatic Dis. 2018.

  • 24.

    Crary JF, Trojanowski TQ, Schneider JA, et al. Primary age-related tauopathy (PART): a common pathology associated with human aging. Acta Neuropathol. 2014;128:755–66.

  • 25.

    Scott R, Khan FM, Zeineh J, Donovan M, Fernandez G. Gland ring morphometry for prostate cancer prognosis in multispectral immunofluorescence images. In: International Conference on Medical Image Computing and Computer-Assisted Intervention 2014 LNCS 8673. Cham: Springer; 2014. p. 585–92.

  • 26.

    Badrinarayanan V, Kendall A, Cipolla R. SegNet:a deep convolutional encoder-decoder architecture for image segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39:2481–95.

  • 27.

    Paszke A, Gross S, Chintala S, Chanan G, et al. Automatic differentiation. In: PyTorch 2017. Long Beach: NIPS-W; 2017.

  • 28.

    Esteva A, Kuprel B, Novoa RA, et al. Dermatologist-level classification of skin cancer with deep neural networks. Nature. 2017;542:115–8.

  • 29.

    Gulshan V, Peng L, Coram M, et al. Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs. JAMA. 2016;316:2402–10.

  • Articles You May Like

    ‘A Million Elephants’ No More: Conservationists In Laos Rush To Save An Icon
    Bio-IT FAIR Data Hackathon Pushes The Needle In Science
    How To Help A Kid Survive Early Puberty
    How To See The Future (No Crystal Ball Needed)
    Tomato pan-genome makes bringing flavor back easier

    Leave a Reply

    Your email address will not be published. Required fields are marked *