DEBrowser – interactive differential expression analysis and visualization tool for count data

Bioinformatics

Sequencing data has become a standard measure of diverse cellular activities. For example, gene expression is accurately measured by RNA sequencing (RNA-Seq) libraries, protein-DNA interactions are captured by chromatin immunoprecipitation sequencing (ChIP-Seq), protein-RNA interactions by crosslinking immunoprecipitation sequencing (CLIP-Seq) or RNA immunoprecipitation (RIP-Seq) sequencing, DNA accessibility by assay for transposase-accessible chromatin (ATAC-Seq), DNase or MNase sequencing libraries. The processing of these sequencing techniques involves library-specific approaches. However, in all cases, once the sequencing libraries are processed, the result is a count table specifying the estimated number of reads originating from each genomic locus. Differential analysis to determine which loci have different cellular activity under different conditions starts with the count table and iterates through a cycle of data assessment, preparation and analysis. Such complex analysis often relies on multiple programs and is therefore a challenge for those without programming skills.

Researchers at the University of Massachusetts Medical School, have developed DEBrowser as an R bioconductor project to interactively visualize every step of the differential analysis, without programming. The application provides a rich and interactive web based graphical user interface built on R’s shiny infrastructure. DEBrowser allows users to visualize data with various types of graphs that can be explored further by selecting and re-plotting any desired subset of data. Using the visualization approaches provided, users can determine and correct technical variations such as batch effects and sequencing depth that affect differential analysis. The researchers show DEBrowser’s ease of use by reproducing the analysis of two previously published data sets.

rna-seq

DEBrowser is a flexible, intuitive, web-based analysis platform that enables an iterative and interactive analysis of count data without any requirement of programming knowledge.

Availability – Project home page: https://bioconductor.org/packages/release/bioc/html/debrowser.html


Kucukural A, Yukselen O, Ozata DM, Moore MJ, Garber M. (2019) DEBrowser: interactive differential expression analysis and visualization tool for count data. BMC Genomics 20(1):6. [article]

Articles You May Like

Trump Unveils Ambitious Missile Defense Plans
Ocean waves are officially getting stronger as water temperatures rise each year
Is It Considered Unethical For Doctors To Profit From Pharmaceutical Companies?
Comparative analysis of differential gene expression analysis tools for single-cell RNA sequencing data
Ideas for a bioinformatics based web app

Leave a Reply

Your email address will not be published. Required fields are marked *