Network Analysis Reveals TNF as a Major Hub of Reactive Inflammation Following Spinal Cord Injury

Bioinformatics
  • 1.

    Zamanian, J. L. et al. Genomic analysis of reactive astrogliosis. J. Neurosci. 32, 6391–6410 (2012).

  • 2.

    Liddelow, S. A. et al. Neurotoxic reactive astrocytes are induced by activated microglia. Nature 541, 481–487 (2017).

  • 3.

    Fawcett, J. W. & Asher, R. A. The glial scar and central nervous system repair. Brain Res. Bull. 49, 77–391 (1999).

  • 4.

    Silver, J. & Miller, J. H. Regeneration beyond the glial scar. Nat. Rev. Neurosci. 5, 146–156 (2004).

  • 5.

    Anderson, M. A. et al. Astrocyte scar formation aids central nervous system axon regeneration. Nature 532, 195–200 (2016).

  • 6.

    Alizadeh, A., Dyck, S. M. & Kataria, H. Neuregulin-1 positively modulates glial response and improves neurological recovery following traumatic spinal cord injury. GLIA 65, 1152–1175 (2017).

  • 7.

    Wu, X. et al. RhoA/Rho Kinase mediates neuronal death through regulating cPLA2 activation. Mol. Neurobiol. 54, 6885–6895 (2017).

  • 8.

    Liu, G. et al. FK506 attenuates the inflammation in rat spinal cord injury by inhibiting the activation of NF-kappa B in microglia cells. Cell Mol. Neurobiol. 37, 843–855 (2017).

  • 9.

    Shao, A. et al. Hydrogen-rich saline attenuated subarachnoid hemorrhage-induced early brain injury in rats by suppressing inflammatory response: possible involvement of NF-kappa B pathway and NLRP3 inflammasome. Mol. Neurobiol. 53, 3462–3476 (2016).

  • 10.

    Zhong, L. et al. Quantitative proteomics study of the neuroprotective effects of B12 on hydrogen peroxide-induced apoptosis in SH-SY5Y cells. Sci. Rep.-UK 6, 22635 (2016).

  • 11.

    D L Rivas, J. & Fontanillo, C. Protein-protein interactions essentials: key concepts to building and analyzing interactome networks. PLoSComput. Biol. 6, e1000807 (2010).

  • 12.

    Barabási, A. L. & Oltvai, Z. N. Network biology: understanding the cell’s functional organization. Nat. Rev. Genet. 5, 101–113 (2004).

  • 13.

    Han, P., Gopalakrishnan, C., Yu, H. & Wang, E. Gene regulatory network rewiring in the immune cells associated with cancer. Genes 2017(8), 308, https://doi.org/10.3390/genes8110308 (2017).

  • 14.

    McGee, S. R., Tibiche, C., Mark Trifiro, M. & Wang, E. Network analysis reveals a signaling regulatory loop in PIK3CA-mutated breast cancer predicting survival outcome. Genomics Proteomics & Bioinformatics 15, 121–129 (2017).

  • 15.

    Wang, E. et al. Predictive genomics: A cancer hallmark network framework for predicting tumor clinical phenotypes using genome sequencing data. Semin. Cancer Biol. 30, 4–12 (2015).

  • 16.

    Zaman, N. et al. Signaling network assessment of mutations and copy number variations predict breast cancer subtype-specific drug targets. Cell Rep. 5, 216–223 (2013).

  • 17.

    Wang, E. Understanding genomic alterations in cancer genomes using an integrative network approach. Cancer Lett. 340, 261–269 (2013).

  • 18.

    Singh, S. & Li, S. S. Phthalates: toxicogenomics and inferred human diseases. Genomics 97, 148–157 (2011).

  • 19.

    Lin, Y. C., Wang, C. C. & Tung, C. W. An in silicotoxicogenomics approach for inferring potential diseases associated with maleic acid. Chem. Biol. Interact. 223, 38–44 (2014).

  • 20.

    Amberger, J. S., Bocchini, C. A., Schiettecatte, F., Scott, A. F. & Hamosh, A. OMIM.org: Online Mendelian Inheritance in Man (OMIM®), an online catalog of human genes and genetic disorders. Nucleic Acids Res. 43(Database issue), D789–798 (2015).

  • 21.

    Kanehisa, M. et al. KEGG for linking genomes to life and the environment. Nucleic Acids Res. 36, D480–484 (2008).

  • 22.

    Szklarczyk, D. et al. STRING v10: protein-protein interaction networks, integrated over the tree of life. Nucleic Acids Res. 43(Database issue), D447–452 (2015).

  • 23.

    STRING database homepage, https://string-db.org/ (2017).

  • 24.

    Davis, A. P., Wiegers, T. C., Rosenstein, M. C. & Mattingly, C. J. MEDIC: a practical disease vocabulary used at the Comparative Toxicogenomics Database. Database 2012, 1–9 (2012). Article ID bar065.

  • 25.

    Davis, A. P. et al. The comparative toxicogenomics database: update 2013. Nucleic Acids Res. 41, D1104–1114 (2013).

  • 26.

    Comparative Toxicogenomics Database homepage, http://ctdbase.org/ (2017).

  • 27.

    National Center for Biotechnology Information homepage. https://www.ncbi.nlm.nih.gov (2018).

  • 28.

    Kolb, W. P. & Granger, G. A. Lymphocyte in vitro cytotoxicity: characterization of human lymphotoxin. Proc. Natl. Acad. Sci. USA 61(4), 1250–1255 (1968).

  • 29.

    Subramanian, A. et al. Gene set enrichment analysis: A knowledge-based approach for interpreting genome-wide expression profiles. PNAS 102, 15545–15550 (2005).

  • 30.

    Pathan, M. et al. Funrich: An open access standalone functional enrichment and interaction network analysis tool. Proteomics 15, 2597–601 (2015).

  • 31.

    Ashburner, M. et al. Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. Nat. Genet. 25, 25–29 (2000).

  • 32.

    Gene ontology homepage, http://www.geneontology.org/

  • 33.

    Shannon, P., Markiel, A. & Ozier, O. Cytoscape: A Software environment for integrated models of biomolecular interaction networks. Genome Res. 13, 2498–2504 (2003).

  • 34.

    Cytoscape homepage. http://www.cytoscape.org/ (2017).

  • 35.

    Doncheva, N. T., Assenov, Y., Domingues, F. S. & Albrecht, M. Topological analysis and interactive visualization of biological networks and protein structures. Nat. Protoc. 7, 670–685 (2012).

  • 36.

    Tung, C. W. PupDB: a database of pupylated proteins. BMC Bioinformatics 13, 40 (2012).

  • 37.

    Maere, S., Heymans, K. & Kuiper, M. BiNGO: a Cytoscape plugin to assess over representation of Gene Ontology categories in biological networks. Bioinformatics 21, (3448–3449 (2005).

  • 38.

    Omicsbean Platform, http://www.omicsbean.com:88/ (2017).

  • 39.

    Croft, D. et al. Reactome: a database of reactions, pathways and biological processes. Nucleic Acids Res. 39, D691–697 (2011).

  • 40.

    Coletti, M. H. & Bleich, H. L. Medical subject headings used to search the biomedical literature. J. Am. Med. Inform. Assoc. 8, 317–323 (2001).

  • 41.

    Albert, R. & Barabási, A. L. Statistical mechanics of complex networks. Rev. Mod. Phys. 74, 47–97 (2002).

  • 42.

    Assenov, Y., Ramirez, F., Schelhorn, S. E., Lengauer, T. & Albrecht, M. Computing topological parameters of biological networks. Bioinformatics 24, 282–284 (2008).

  • 43.

    Zotenko, E., Mestre, J., O’Leary, D. P. & Przytycka, T. M. Why do hubs in the yeast protein interaction network tend to be essential: reexamining the connection between the network topology and essentiality. Plos Comput. Biol. 4, e1000140 (2008).

  • 44.

    Cohen, R. & Havlin, S. Scale-free networks are ultrasmall. Phys. Rev. Lett. 90, 058701 (2003).

  • 45.

    Kulp, A. & Kuehn, M. J. Biological functions and biogenesis of secreted bacterial outer membrane vesicles. Annu. Rev. Microbiol. 64, 163–184 (2010).

  • 46.

    Zarifkar, A. et al. Agmatine prevents LPS-induced spatial memory impairment and hippocampal apoptosis. Eur. J. Pharmacol. 634, 84–88 (2010).

  • 47.

    Hauss-Wegrzyniak, B., Lynch, M. A., Vraniak, P. D. & Wenk, G. L. Chronic brain inflammation results in cell loss in the entorhinal cortex and impaired LTP in perforant path-granule cell synapses. Exp. Neurol. 176, 336–341 (2002).

  • 48.

    Zoraghi, R. & Reiner, N. E. Protein interaction networks as starting points to identify novel antimicrobial drug targets. Curr.Opin.Microbiol. 16, 566–572 (2013).

  • 49.

    Pagni, C. A. & Zenga., F. Posttraumatic epilepsy with special emphasis on prophylaxis and prevention. ActaNeurochir.Supplementum 93, 27–34 (2005).

  • 50.

    Garga, N. & Lowenstein, D. H. Posttraumatic Epilepsy: A Major problem in desperate need of major advances. Epilepsy Curr. 6, 1–5 (2006).

  • 51.

    Pitkänen, A., Kharatishvili, I. & Karhunen, H. Epileptogenesis in experimental models. Epilepsia 48(Supplement 2), 13–20 (2007).

  • 52.

    Clancy, R. R., Sladky, J. T. & Rorke, L. B. Hypoxic-ischemic spinal cord injury following perinatal asphyxia. Ann. Neurol. 25, 185–189 (1989).

  • 53.

    De Louw, A. J. A. et al. Apoptosis in the rat spinal cord during postnatal development; the effect of perinatal asphyxia on programmed cell death. Neuroscience 112, 751–758 (2002).

  • 54.

    Abematsu, M. et al. Neurons derived from transplanted neural stem cells restore disrupted neuronal circuitry in a mouse model of spinal cord injury. J. Clin. Invest. 120, 3255–3266 (2010).

  • 55.

    Amberger, J., Bocchini, C. & Hamosh, A. A new face and new challenges for Online Mendelian Inheritance in Man (OMIM®). Hum. Mutat. 32, 564–567 (2011).

  • 56.

    Sun, K., Goncalves, J. P., Larminie, C. & Pržulj, N. Predicting disease associations via biological network analysis. BMC Bioinformatics 15, 304, http://www.biomedcentral.com/1471-2105/15/304 (2014).

  • 57.

    Zhang, L. et al. Microenvironment-induced PTEN loss by exosomal microRNA primes brain metastasis outgrowth. Nature 527, 100–104 (2015).

  • 58.

    Zhao, D. et al. Synthetic essentiality of chromatin remodelling factor CHD1 in PTEN-deficient cancer. Nature 542, 484–488 (2017).

  • 59.

    Kuchay, S. et al. PTEN counteracts FBXL2 to promote IP3R3- and Ca(2+)-mediated apoptosis limiting tumour growth. Nature 546, 554–558 (2017).

  • 60.

    Poliseno, L. et al. A coding-independent function of gene and pseudogene mRNAs regulates tumour biology. Nature 465, 1033–1038 (2010).

  • 61.

    Chen, K. et al. RNA-Seq characterization of spinal cord injury transcriptome in acute/subacute phases: a resource for understanding the pathology at the systems level. Plos One 8, e72567, https://doi.org/10.1371/journal.pone.0072567 (2013).

  • 62.

    Salomon, B. L. et al. Tumor Necrosis Factor α and Regulatory T Cells in Oncoimmunology. Front. Immunol. 9, 444, https://doi.org/10.3389/fimmu.2018.00444 (2018).

  • 63.

    Barger, S. W. et al. Tumor necrosis factors alpha and beta protect neurons against amyloid beta-peptide toxicity: evidence for involvement of a kappa B-binding factor and attenuation of peroxide and Ca2+ accumulation. Proc. Natl. Acad. Sci. USA 92, 9328–9332 (1995).

  • 64.

    Mattson, M. P. & Meffert, M. K. Roles for NF-κB in nerve cell survival, plasticity, and disease. Cell Death Differ. 13, 852–860 (2006).

  • Articles You May Like

    A signal processing method for alignment-free metagenomic binning: multi-resolution genomic binary patterns
    Better red than dread: Barrier keeps batteries safe
    Structural insights into chaperone addiction of toxin-antitoxin systems
    Resolution limit of image analysis algorithms
    Graphene-based wearables for health monitoring, food inspection and night vision

    Leave a Reply

    Your email address will not be published. Required fields are marked *